Gerrymandering under Uncertain Preferences
 Benjamin Kelly

Rensselaer Polytechnic Institute
kellyb3@rpi.edu

Abstract

Gerrymandering is the manipulating of redistricting for political gain. While many attempts to formalize and model gerrymandering have been made, the assumption of known voter preference, or perfect information, limits the applicability of these works to model real world scenarios. To more accurately reason about gerrymandering we investigate how to adapt existing models of the problem to work with imperfect information. In our work, we formalize a definition of the gerrymandering problem under probabilistic voter preferences, reason about its complexity compared to the deterministic version, and propose a greedy algorithm to approximate the problem in polynomial time under certain conditions.

Motivation

\rightarrow Many "swing" voters don't have known, constant preferences
\rightarrow Can we incorporate this uncertainty into a formal definition of gerrymandering?

Example of a potential district assignment for deterministic voters and non-deterministic voters

Problem Definition

\rightarrow We defined the problem over a graph of voters, $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
\rightarrow We ask if it is possible to partition \mathbf{G} into connected components (districts) subject to certain conditions

- Does a given candidate win at least a certain number of districts at least a given likelihood?
- Does a given candidate lose at most a certain number of districts with a given likelihood?
- The ratio of the size of the largest district and smallest district must not exceed a parameter, \mathbf{r}

Complexity

\rightarrow The problem is in general NP-Hard
\rightarrow With voter weight bounded by poly $(|\mathbf{V}|)$ and candidate number constant, the problem is NP-Complete
\rightarrow We developed a greedy algorithm to approximate solutions in polynomial time for the bounded case

- Start with a graph of voters with no edges
- Greedily add the edge that gives the given candidate the highest chance of winning at least the desired proportion of given districts

Testing of Algorithm

\rightarrow We created voters with a 2D coordinate as its "trait" location.

- Candidates also have a trait location
- A voter's weight for supporting a candidate is inversely proportional to distance from candidate
- The Plackett-Luce model was used to then assign probabilities to preference profiles for each voter
\rightarrow The voters were then connected into a graph
- Edges were created randomly with a given expected degree for each voter in the graph
- Voters close to each other in preference more likely to be connected - Models people of similar opinions often living near each other - Effect controlled by a homophily factor from o to 1

Results

\rightarrow We tested our greedy algorithm to analyze both its success rate and its runtime.
\rightarrow We confirmed the algorithm scales in polynomial time with increased voters, and exponentially with increased candidates
\rightarrow Increasing \mathbf{r} had a great effect on the success rate of the algorithm

\mathbf{r} value vs. against the proportion of graph where a successful solution was found

Voter count vs the fourth root of runtime (2 candidates)

Candidate number vs runtime (log scale) (100 voters)

